top of page
Search
nahasbiridwechs

A Guide To Chemical Engineering Process Design And Economics: Understand The Basics And Challenges O



This book is sold as a digital e-book, and is intended for teaching process design to chemical engineers in their senior undergraduate year to smooth the transition from academic to professional life. While intended for classroom use, this text is also a useful reference for any engineering professional interested in process design.


Many chemical processes do not take place at ambient temperature or pressures. In order to reach these non-ambient conditions, utilities will have to be used to raise or lower temperatures and compress gases. (Towler, Towler/UOP) Utilities often contribute 5 to 10% of the price of a product, and may come from public or private utility companies or on-site plants. For purchased utilities, costs depend on consumption, while for company-owned utilities, there will be both capital and operating costs. They include things such as steam for heating, electricity, cooling water, refrigeration, fuels such as natural gas, wastewater treatment, waste disposal, and landfill. Steam is often the largest utility cost. Cogeneration unit can supply electricity accompanied with different steam pressures. (Seider 2009)




A Guide To Chemical Engineering Process Design And Economics.pdf



Electricity is used to power many different kinds of equipment. It has many advantages: it is efficient (> 90%), reliable, available in a wide range of power, shaft speeds, designs, lifetimes, convenience, costs, and maintenance. It is generally used up to 200 hp, and sometimes over 10,000 Hp. In chemical process plants, the electricity demand is generally determined by the work or energy required for compression, pumping, air cooling, lights, and many other items. This electricity often times is purchased from local electricity providers, but many plants generate their own electricity via sophisticated processes.


Obviously any engineer would design the cogeneration plant to meet at least the energy requirement necessary for plant operation, but cogeneration plants often times are designed to exceed the plant electricity requirement to drive another source of capital. Many describe this scenario as a "make or buy" scenario (Towler 2012). This scenario provides chemical producers leverage when negotiating contracts with outsourced electricity providers and this allows plants to purchase electricity at a wholesale price. This is a huge advantage of considering on-site electricity production because electricity is needed in relatively high quantities for all chemical plants. Being able to minimize electricity costs, or even profit off of electricity production is a huge economical consideration that all plants employ.


Steam is the most commonly used heat utility used in chemical plants, and as a result understanding how it is used is essential in the study of Utility systems. Steam is used both as a process fluid (feedstock, diluent to absorb heat of reaction, heating agent, and stripping agent in absorbers and adsorbers ) and utility. It can be used to drive pumps and compressors, ejectors (for producing a vacuum), and heat exchangers. As one can clearly see, steam is a versatile, and useful utility.


One of the chief concerns in selecting and designing process utility systems for heating and cooling is how to achieve the most energy efficient design. There are countless means by which plants lose energy, two of the foremost being through the mixing of different temperature or pressure streams and through the disposal of warmed cooling water. (Seider, 2009) Proper utilities design can help mitigate each of these losses as well as many others. The energy efficiency of a plant will depend primarily on the heating and cooling methods that are being used and the overall system design itself. These two parameters are important in determining how well energy is transferred to the desired media as well as how well that energy is recovered and recycled.


Recovery and recycle of energy is perhaps the most important aspect of creating an energy efficient plant design, and it is important for process engineers to fully consider possibilities for heat recovery in order to aid in economic viability.


Heat exchanger networks are a very common energy recovery method in industrial processes. These networks most frequently allow energy from heated product streams to be transferred to feed streams that must be brought up to process temperature. (Biegler, 1997) More information on the function and design of heat exchanger networks can be found on the heat exchanger wiki page. The following are several examples of energy recovery via heat exchange that are used in industrial processes.


Additionally, there are still more opportunities for recovery in steam generation processes. One typical case is the use of waste heat to preheat air entering the boiler. Optimistically, this can result in a 5% improvement in heat recovery for the system. Another method is the recycle of steam condensate back to the boiler. This has two main benefits: it retains the heat still present in the condensed steam and it retains the pretreatment chemicals added to the steam. (Broughton, 1994)


Most chemical processes will produce some sort of waste. Disposal occurs to the atmosphere (in the case of some gases), sewers, body of water, or a landfill. Waste may require some treatment before disposal to meet regulations. Depending on process economics, byproducts may be recovered and processed. (Seider 2009 pg 609)


Wastewater effluent streams, along with water runoff from around the plant, are treated to control for pH, toxicity, suspended solids, and biological oxygen demand (for aquatic life protection) prior to discharge. Each of these controls is typically addressed with a separate method. Acidity and basicity is balanced through the addition of an acid or alkaline solution. Toxic wastewater may be treated with chemical processes or simply diluted to safe concentrations. Suspended solids can be removed via filtration and/or with clarifiers. Oxygen demand of wastewater can be mitigated using activated sludge treatment processes. Once the water quality complies with the EPA, and state-mandated, regulations, it can be safely released. More information on the large number of industry-specific guidelines for waste effluent can be found on the EPA website ( -effluent-guidelines).


In the United States air pollution is regulated in the Clean Air Act, and almost all pollutant emitting plants are regulated under this law. The types of plants that can release significant emissions include petroleum refineries, sulfur recovery plants, carbon-black plants, fuel conversion plants, chemical process plants, fossil fuel plants, and petroleum storage and transfer facilities. To receive permission to construct a plant must undergo a review to show that it will not cause a violation of the Ambient Air Quality Standards(Peters, 2003).


The chemical engineering curriculum is designed to give graduates a broad background in chemical engineering processes and to prepare them to become practicing engineers. Graduates are prepared for positions in operations, development, design, construction, and management of chemical plants, environmental processes, life sciences, and materials processing. These industries convert raw materials, such as ethylene and other organic feedstocks, via chemical and physical changes to produce economically desirable products such as plastics, detergents, paints, and adhesives. Students with this background are also prepared for graduate school in engineering and science as well as for any professional school. The Bachelor of Science in Chemical Engineering program is accredited by the Engineering Accreditation Commission of ABET,


The Chemical and Biomedical Engineering Department uses an outcomes-assessment plan for continuous program improvement. Course work and design projects, in conjunction with yearly interviews provide the measures of learning outcomes. These outcomes-assessment results provide feedback to the faculty to improve teaching and learning processes.


One link in the complex chain of medical economics is the cost of bringing new drugs and biologicals to the market. Advances in recombinant-DNA technology permit production of therapeutically active proteins in effectively unlimited quantities. Nevertheless, each expression system has a characteristic influence on the nature of the product produced and the process required to obtain it. In this case study we compare experiences with recombinant-tissue plasminogen activator (rtPA) produced in Chinese hamster ovary (CHO) cells and in Escherichia coli, with the aim of understanding the roles of some of the parameters that affect process economics. tPA belongs to the group of highly specific serine proteases that convert plasminogen to plasmin, which in turn degrades several protein substrates including fibrin, thus making it an effective thrombolytic agent. The treatment of acute myocardial infarction with such thrombolytic agents can result in early discharge of patients and decreased medical costs. However, there are major differences in the prices of the various available agents. The price of the FDA-licensed tPA product is $2,200 per dose or $22,000 per gram. It is believed that a significant portion of this price relates to manufacturing costs. We examine by way of case study illustration the cost breakdown for the two processes, and highlight important process, design and economic considerations that ultimately define a particular protein product.


The education of the chemical engineer is based on the fundamental sciences of physics, chemistry and biology, on mathematical and computer techniques, and on basic engineering principles. This background makes the chemical engineer extremely versatile and capable of working in a variety of industries: chemical, biochemical, petroleum, materials, microelectronics, environmental, food processing, consumer products, consulting and project management. It is also good preparation for law and medical schools.


For the purposes of determining admission to or retention in the department, grade point averages will be based on no more than two attempts for each course. Students must maintain satisfactory progress (minimum GPA of 2.0) in chemical engineering courses and in their overall record. 2ff7e9595c


1 view0 comments

Recent Posts

See All

Comentários


bottom of page